Introduction to logic gates:
Logic gates process signals which represent true or false. Normally the positive supply voltage +Vs represents true and 0V represents false. Other terms which are used for the true and false states are shown in the table on the right. It is best to be familiar with them all.
The different types of gates are as follows:-
- NOT GATE
Logic states True False 1 0 High Low +Vs 0V On Off - AND GATE
- NAND GATE
- OR GATE
- NOR GATE
- EX-OR GATE
- EX-NOR GATE
Logic gate symbols...
There are two series of symbols for logic gates: The traditional symbols have distinctive shapes making them easy to recognise so they are widely used in industry and education.International Electrotechnical Commission symbols are rectangles with a symbol inside to show the gate function. They are rarely used despite their official status, but you may need to know them for an examination.
Inputs and outputs
Gates have two or more inputs, except a NOT gate which has only one input. All gates have only one output. Usually the letters A, B, C and so on are used to label inputs, and Q is used to label the output. On this page the inputs are shown on the left and the output on the right.
The inverting circle (o)
Some gate symbols have a circle on their output which means that their function includes inverting of the output. It is equivalent to feeding the output through a NOT gate. For example the NAND (Not AND) gate symbol shown on the right is the same as an AND gate symbol but with the addition of an inverting circle on the output.Truth tables
Input A | Input B | Output Q |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Logic ICs
Logic gates are available on special ICs (chips) which usually contain several gates of the same type, for example the 4001 IC contains four 2-input NOR gates. There are several families of logic ICs and they can be split into two groups:NOT gate (inverter)
The output Q is true when the input A is NOT true, the output is the inverse of the input: Q = NOT AA NOT gate can only have one input. A NOT gate is also called an inverter.
| ||||||||
Traditional symbol | IEC symbol | Truth Table |
AND gate
The output Q is true if input A AND input B are both true: Q = A AND BAn AND gate can have two or more inputs, its output is true if all inputs are true.
| |||||||||||||||||
Traditional symbol | IEC symbol | Truth Table |
NAND gate (NAND = Not AND)
This is an AND gate with the output inverted, as shown by the 'o' on the output.The output is true if input A AND input B are NOT both true: Q = NOT (A AND B)
A NAND gate can have two or more inputs, its output is true if NOT all inputs are true.
| |||||||||||||||||
Traditional symbol | IEC symbol | Truth Table |
OR gate
The output Q is true if input A OR input B is true (or both of them are true): Q = A OR BAn OR gate can have two or more inputs, its output is true if at least one input is true.
| |||||||||||||||||
Traditional symbol | IEC symbol | Truth Table |
NOR gate (NOR = Not OR)
This is an OR gate with the output inverted, as shown by the 'o' on the output.The output Q is true if NOT inputs A OR B are true: Q = NOT (A OR B)
A NOR gate can have two or more inputs, its output is true if no inputs are true.
| |||||||||||||||||
Traditional symbol | IEC symbol | Truth Table |
EX-OR (EXclusive-OR) gate
The output Q is true if either input A is true OR input B is true, but not when both of them are true: Q = (A AND NOT B) OR (B AND NOT A)This is like an OR gate but excluding both inputs being true.
The output is true if inputs A and B are DIFFERENT.
EX-OR gates can only have 2 inputs.
| |||||||||||||||||
Traditional symbol | IEC symbol | Truth Table |
EX-NOR (EXclusive-NOR) gate
This is an EX-OR gate with the output inverted, as shown by the 'o' on the output.The output Q is true if inputs A and B are the SAME (both true or both false): Q = (A AND B) OR (NOT A AND NOT B)
EX-NOR gates can only have 2 inputs
| |||||||||||||||||
Traditional symbol | IEC symbol | Truth Table |
0 comments:
Post a Comment